Hilbert Space with Reproducing Kernel and Uniform Distribution Preserving Maps. I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Distribution, Discrepancy, and Reproducing Kernel Hilbert Spaces

In this paper we define a notion of uniform distribution and discrepancy of sequences in an abstract set E through reproducing kernel Hilbert spaces of functions on E. In the case of the finite-dimensional unit cube these discrepancies are very closely related to the worst case error obtained for numerical integration of functions in a reproducing kernel Hilbert space. In the compact case we sh...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Reproducing Kernel Hilbert Space vs. Frame Estimates

We consider conditions on a given system F of vectors in Hilbert space H, forming a frame, which turn H into a reproducing kernel Hilbert space. It is assumed that the vectors in F are functions on some set Ω. We then identify conditions on these functions which automatically give H the structure of a reproducing kernel Hilbert space of functions on Ω. We further give an explicit formula for th...

متن کامل

Subspace Regression in Reproducing Kernel Hilbert Space

We focus on three methods for finding a suitable subspace for regression in a reproducing kernel Hilbert space: kernel principal component analysis, kernel partial least squares and kernel canonical correlation analysis and we demonstrate how this fits within a more general context of subspace regression. For the kernel partial least squares case a least squares support vector machine style der...

متن کامل

Policy Search in Reproducing Kernel Hilbert Space

Modeling policies in reproducing kernel Hilbert space (RKHS) renders policy gradient reinforcement learning algorithms non-parametric. As a result, the policies become very flexible and have a rich representational potential without a predefined set of features. However, their performances might be either non-covariant under reparameterization of the chosen kernel, or very sensitive to step-siz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Современные проблемы математики

سال: 2013

ISSN: 2226-5929,2226-5937

DOI: 10.4213/spm42